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From a practical engineering point of view, there is interest in understanding the
influences of small curvatures on the modal characteristics of a plate-shell combination.
However, research reports in this area are rarely found in literature. This paper is the first
one to study the influences of small curvatures on free vibration of a plate-shell combined
structure, consisting of a circular barrel-like shell and two spherically curved end plates,
using the line receptance concepts and approximate frequency equations of barrel-shaped
shell and spherically curved plate. It illustrates in detail information about natural
frequencies and mode shapes of the combined structure under different geometric
configurations. Consequently, it provides useful information for setting up criteria for
designing hermetic plate-shell joined structures, such as the hermetic shell of a refrigeration
compressor. The receptance method, which is basically a component mode synthesis
technique, is adopted as the solution procedure in this study. It predicts the responses and
frequencies of a combined system in terms of the responses and frequencies of its subsystems.
This technique, for cases to which it can be applied successfully, is a powerful tool in creating
an understanding of the physics of combined structures.

© 2000 Academic Press

1. INTRODUCTION

When a shell of revolution (cylindrical, spherical, conical, etc.) is coupled with end or
intermediate plates (flat or spherically curved), the dynamic behavior of the combined
structure becomes relatively complicated. The wide engineering applications of these joined
structures in different areas, such as pressure vessels, refrigeration compressors, nuclear
reactors, ships, submarines, acronautical and space structures, have attracted considerable
research interest and promoted development of different methods for analyzing their
vibration characteristics.

Computer programs, mostly based on the finite element method, were used to obtain the
natural frequencies and modes of plate—shell combined structures with any combination of
boundary conditions with an accuracy sufficient for most engineering applications.
However, the natural frequencies and corresponding mode shapes obtained by the finite
element method are mixtures of three categories, namely, the axial mode, the tangential
mode and the transverse mode. Comparing with numerical approaches such as the finite
element method, analytical approaches are often appropriate in playing the role of
providing physical insight into the vibration characteristics of the combined structure. The
vibration modes in a specific category can be obtained in the order of natural frequency by
analytical approaches without bringing modes belonging to other categories.
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Researchers have applied analytical approaches for modal analysis of the combined
structures for a long time. Smith and Haft [1, 2] used the classical method of matching all
the boundary conditions at the intersection of a circular cylindrical shell and an elastic plate
to determine the natural frequencies and mode shapes. Hirano [3], and Takahashi and
Hirano [4, 5] studied the free vibrations of vessels consisting of thin-walled cylindrical shells
and circular plates, by formulating the Lagrangian of the combined system in the form of
the unknown boundary values of displacement and slope. Using the conditions of
continuity, the frequencies and the displacements were determined by means of minimizing
the total Lagrangian with respect to the unknown boundary values. Suzuki et al. [6, 7]
investigated the free vibration of thick-walled vessels with variable thickness by
incorporating thick plate and shell theories. Kosawada et al. [8] analyzed the asymmetric
vibration of a combined system consisting of a barrel-like shell of revolution having
constant meridional curvature and circular plate lids. Suzuki et al. [9] studied the free
vibrations of a vessel consisting of circular plates and a shell of revolution with varying
meridional curvature. The same solution technique used in references [3-5] was applied in
references [6-9]. Irie et al. [10, 11] applied the transfer matrix method to study free
vibration of joined shells. Yamada et al. [12] studied the free vibration of a circular
cylindrical double-shell system closed by end plates. Tavakoli and Singh [13-15] proposed
a state-space method, which is a transfer matrix-based substructuring technique, for modal
analysis of a hermetic can with a circular cylindrical shell and two circular end plates.
Cheng and Nicolas [16] used the variational approach and incorporated extensional and
torsional springs with spring constants adjustable to simulate the boundary conditions and
coupling conditions at the interface of a circular cylindrical shell and a circular plate for
vibration analysis. The method of matching mechanical impedances for the subsystems has
also been applied. Sakarov [17] introduced the method of dynamic rigidities, which are
related to impedances, for joined systems along a line and applied it to a circular cylindrical
shell with an annular plate at one end. Faulkner [18], Wilken and Soedel [19, 20], and
Azimi et al. [21-24] applied the concept of line receptances to combinations of shells, rings
and plates. Huang and Soedel [25-27] further implemented the receptance method to study
the effects of changes in geometry and joining position on vibrational behavior of a multiple
plates-shell combination, explore structural coupling behavior between the shell and the
plate, and investigate forced vibration and vibration cancellation of the plate—shell
combinations. Lately, Wong and Sze [28] applied matched asymptotic expansion method
and used membrane approximation to analyze the torsion-free axi-symmetric vibration
modes of thin cylindrical shell with hemispherical caps.

Properly applied these analytical approaches can effectively solve eigenvalue problems of
certain structural configurations and obtain some vibration characteristics. From
a practical engineering point of view, there is interest in understanding the influences of
small curvatures on the modal characteristics of plate-shell combination. However,
research reports in this area, such as the one published by Wong and Sze [28], are rarely
found in literature. This paper is the first one to study the influences of small curvatures on
the free vibration of a plate-shell combined structure, consisting of a circular barrel-like
shell and two spherically curved end plates, using the line receptance concepts and
approximate frequency equations of barrel-shaped shell and spherically curved plate. It
illustrates in detail information about natural frequencies and mode shapes of the combined
structure under different geometric configurations. Consequently, it provides useful
information for setting up criteria for designing hermetic plate-shell joined structures, such
as the hermetic shell of a refrigeration compressor.

The receptance method, which is basically a component mode synthesis technique, is
adopted as the solution procedure in this study. It predicts the responses and frequencies of
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a combined system in terms of the responses and frequencies of its subsystems. This
technique, for cases to which it can be applied successfully, is a powerful tool in creating an
understanding of the physics of combined structures. An advantage of using the receptance
method is that the receptances of the subsystems may be determined by any method, which
is sufficiently accurate. Thus, they can be obtained analytically, experimentally, or
numerically.

2. SYSTEM RECEPTANCES

Bishop and Johnson [29] defined a receptance as the ratio of a displacement or slope
response at a certain point to a harmonic force or moment input at the same or a different
point. When structures are joined along lines, line receptances may be defined and treated
the same as point receptances under the condition that the spatial dependencies of the
receptance can be eliminated. This condition is usually satisfied if shells of revolution are
joined to other shells of revolution along the joint circles or to structures of revolution such
as circular rings or plates. For the case where two circular plates are joined to a circular
cylindrical shell, in general, five displacement or slope connections and five force or moment
connections could be considered for each plate-shell pair. The possibilities are
displacements in three directions and slopes in two directions (consistent with the classical
thin shell theory) for the shell and corresponding displacements or slopes of the plate,
together with appropriate force or moment connections. The force or moment connections
are line loads, which vary with sinnf or cosnf, on the argument that at each natural
frequency of the joined system; the associated mode shape component varies with sin nf or
cosnf in circumferential direction. Thus, the connecting forces or moments must vary with
sinn0 or cos n0. It is assumed that the plate and the shell are joined at the reference surfaces.

The full treatment of using five connections is not necessary, if one limits the analysis to
the lower frequencies and modes of the system. For these modes, it is reasonable to assume
that the circular plate is inelastic in its plane and admits only transverse deflections and
a rigid-body motion in its plane. Also, compared to typical expected transverse amplitudes
of the connected system, possible influences of small connection deflections in the tangential
planes of the shell can be neglected. The number of connections of each plate—shell joint pair
can be reduced to two, namely the radial slope changes at the plate boundary coupled to
axial slope changes of the shell and the radial rigid-body motion of the plate coupled to
a transverse motion of the shell. A similar approach was used by Sakarov [17] and
Faulkner [18], respectively, except that only one connection was needed there since the
plates were attached to the shell at the shell’s simple supports, which suppress the
rigid-body modes of the plate.

The displacement (or slope) amplitudes X 4; (i = 1-10), as functions of harmonic force (or
moment) amplitudes Fy; (j = 1-10), are

Xaiy = [ {Faj}, (1)
where o;; are the receptances of system A. Similarly,

Xy} = [Bpal" {Faq}, 2
where f,, (p = 1-5 and g = 1-5) are the receptances of system B. Also,

Xes} = Dnsd " {Fedls )

where y,, (s = 6-10 and t = 6-10) are the receptances of system C.
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When the three systems are joined and no forces (or moments) external to the three
systems are applied, it must be that {Fp,} = — {F4,} and {F} = — {F,}. Also, due to
displacement (or slope) continuity, it must be that {Xp,} = {X,,} and {X¢,} = {X ).

Suitably combining equations (1)-(3) and applying the above equalities gives

|:O‘pq +Bra O }{F Bq} —0. @)
OCsq Olst + Vst FCt

For the simplification employed here, equation (4) reduces to

a1+ fir oz + Bia %13 %14 F

%1+ far 022+ Paz %23 %24 M, ~0 5)
%31 032 U3z + Va3 OaatVaa| | B2
041 %42 043 + V43 Oaa + Yasa| (M>

where F is the amplitude of the force which couples the rigid planar motion of the plate to
the motion of the shell and M is the amplitude of the moment which couples the transverse
motion of the plate to the motion of the shell. The subscripts 1 and 2 indicate the first and
the second plate—shell joint pairs respectively. The receptances f3,,, 5,1, Y34 and y43 are zero
due to zero coupling of transverse plate motion to in-plane plate motion. The system
frequency equation of a two plates—shell combination reduces to

a1y + Bry %12 %13 %yq
021 %22 + P2z %23 %24 _0 ©)
031 %32 %33 + V33 %34 .
041 %g2 %43 Ogq + Vaa

3. FORMULATION OF RECEPTANCES

3.1. SHELL RECEPTANCES

For the case that one circular plate is joined to a circular cylindrical shell. The transverse
deflection, us(x*, 0, t), is caused by the transverse loading, so is the slope of the axial
direction, f.(x* 0,t). They are required for formulating the receptance due to the
displacement response of the shell at x* to line force loading at x*, o, and the receptance
due to the slope response of the shell at x* to line force loading at x*, «, . These receptances
are defined as

_ U3(X*, 69 t)

TR0 "
Bx,0,1)

TR (¢, 0,1 ®

To obtain these receptances, one has to solve the problem of a shell loaded by
a transverse line forcing F;(x, 0, 1),

F5(x, 0, t) = Fycos POS(x — x*)el, 9)
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where 3 denotes the transverse direction, F; is the amplitude of the line load which couples
the rigid planar motion of the plate to the motion of shell, P =0, 1,2,...,(x — x*) is
a Dirac-delta function, and x* is the location of the line load. The equations of the natural
modes of a simply supported cylindrical shell, including the longitudinal mode, the
circumferential mode and the transverse mode, are expressed as

eonn (X, 0) = (Aknn/ Ciomn) €OS(mmx/Ly) cOs n(0) — ),
Upiomn (X, 0) = (Bioun/ Ciema) Sin(mmx/Lg) sin n(0 — ¢), (10)
U3 iemn(x, 0) = sin(mnx/Lg) cos n(0 — ¢),
where m=1,2,...,n=0,1,2,...,k=1,2,3, and 0 = 0, n/2n. The mode amplitude ratios

(Akmn/ Cromn) and (Byn/Cimn) are discussed by Soedel [30] and given in Appendix A.
The transverse deflection due to line force loading is of the form

3(x, 0,1 = Z Z 2F, sin(mnx*/Ly) sin(mnx/Ly) cos nf e** "

k=1m=1 phsLs |:("4kmn/c‘kmn)2 + (Bkmn/ckmn)2 + 1](wlgmn - wZ)’

where n = P. Note that the summation over n has been eliminated because of the
orthogonality of the forcing function component cos P with the mode component cos n0.
Also, ¢ = 0 was used for this derivation since the non-preferential direction of the modes for
a system of revolution does not enter the receptance formulation. The ¢ = ©/2n modes have
the same natural frequencies and mode shapes, but shifted by ¢ in the 6 direction. The
natural frequencies of a simply supported cylindrical shell, wy,,,, k = 1, 2, 3, corresponding
to the transverse mode, the longitudinal mode and the circumferential mode, respectively,
are also given in Appendix A.

The slope response due to line force loading is obtained by differentiating equation (11):

ouy 3 & — 2F, mmsin(mnx*/Ly) cos(mnx/Lg) cos n0 e

E - k=1m=1 phsLs2 |:(Akmn/ckmn)2 + (Bkmn/ckmn)2 + 1](wlgmn - w2)’

Be=— (12)

Evaluating equations (11) and (12) at x = x* and dividing them by equation (9) gives

SR 2sin?(mmx*/Ly)
ol = N 13
11 kgl mgl phsLs |:(A’4kmn/cjkmn)2 + (Bkmn/cjkmn)2 + 1](wlfmn - wZ) ( )
302 — 2mn sin(mnx* /L) cos(mmx*/Ly
oy ¥ (mmx* L) cos(mmx* /L) 14

k=1m=1 phsLs2 [(Akmn/ckmn)2 + (Bkmn/ckmn)2 + 1]((/0]%mn - wZ)’

The receptance due to the slope response of the shell at x* to line moment loading at x* is
denoted as «,,. While the receptance due to the displacement response of the shell at x* to
line moment loading at x* is denoted as «,. These two receptances are defined as

_ A 0.0)

Uao = M_(x*, 0, 0 (15)
*

%y, = u3(x 397 t) (16)

Mx(X*7 0’ t)
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To obtain these receptances, one has to solve the problem of a shell excited by a line
moment

M.(x, 0,t) = M cos P05 (x — x*)ei®, (17
where M, (x, 0, t) is a distributed moment and M, is the amplitude of the moment per unit

length in circumferential direction. The displacement response of the shell due to line
moment loading is of the form

(0.0 23: i 2Mynm cos(mmx*/Ly) sin(mmnx/Ly) cos nf e

. 18
k=1m=1 phsL52 [(Akmn/ckmn)2 + (Bkmn/cjkmn)2 + 1](wlgmn - a)Z) ( )

The slope response of the shell due to line moment loading is again obtained by
differentiation

0

0.1 = Z 5 2Mym?*n? cos(mmnx* /L) cos(mmx/Lg) cos n0 e3¢
(X, .
k=1m=1 phsLs [(lélkmn/c‘kmn)2 + (Bkmn/ckmn)2 + 1](wlfmn - wZ)

(19)

Evaluating equations (18) and (19) at x = x* and dividing them by equation (17), equations
(15) and (16) become

3002 2(mm)? cos?(mmx*/Ly)
= . 20
2 kgl mgl phsLs |:("4kmn/c‘kmn)2 + (Bkmn/Cvkmn)2 + 1](wlgmn - wZ) ( )
_ : % %
2mm sin(mmnx*/Lg) cos(mmx* /L) 1)

2T kgl mzz:l phsLs2 |:(Akmn/ckmn)2 + (Bkmn/ckmn)2 + lj(wlfmn - wZ)'

When two circular plates are joined to the shell, the coupling harmonic line forces and
line moments are

Fyi(x, 0, t) = Fy;cos POS(x — x¥)ed®, (22)
and
M (x, 0, 1) = My;cos POS(x — x})ei®, (23)

where Fy;, My; (i = 1, 2) are the magnitudes of the coupling line forces and line moments
between the plates and the shell, P =0, 1,2, ...,0(x — x¥) is the Dirac-delta function, and
xF¥ (i =1, 2) are the locations where the plates are joined to the shell. Using the same
approach in deriving the shell receptances for the single plate-shell case, the receptances of
the shell, which is connected by two circular plates, can be defined as:

(1) The receptance due to the displacement response of the shell at x¥(i = 1,2) to the
coupling line force at xJ(j = 1,2) is

32 2 sin(mnx¥/Ly) sin(mnx}/Ly)

Olpg = Z

k=1 mgl phsLs [(lélkmn/c‘kmn)2 + (Bkmn/ckmn)2 + lj(wlfmn - wZ)’

(24)

where b =2i — 1 and d =2j — 1.
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(2) The receptance due to the displacement response of the shell at x*(i = 1, 2) to the
coupling line moment at x¥(j = 1,2) is

3z — 2mm sin(mmx}/Ly) sin(mnx¥/Ly)
Do = D, 2 h12 2 2 7 2y
k=1m=1P SLS [(Akmn/ckmn) + (Bkmn/ckmn) + lj(wkmn w )

(25)

where b =2i — 1 and g = 2j.

(3) The receptance due to the slope response of the shell at x¥(i = 1, 2) to the coupling
line force at x¥(j = 1,2) is

300 — 2mm cos(mnx¥/Ly) sin(mmx*/L,
2a=3 Y ( /L) sin(mnx}/Ly) (26)

k=1m=1 phsLs2 |:(Akmn/ckmn)2 + (Bkmn/ckmn)2 + 1](wl%mn - a)Z)’
where f=2iand d = 2j — 1.
(4) The receptance due to the slope response of the shell at xj(i = 1, 2) to the coupling

line moment at x¥(j = 1,2) is

3002 2(mm)?* cos(mnx}/Ly) cos(mnx}/Ly)
oy, = s 27
% kgl mz=:1 phsLS [(Akmn/ckmn)2 + (Bkmn/ckmn)2 + lj(wl%mn - wZ) ( )

where f= 2i and g = 2j.

Comparing these 16 shell receptances, it is seen that o, = 0yq, 003 = 031, 014 = %41,
O3y = Oy3, Olgy = Oy4 and o3 = 034, Which is as expected from the reciprocity theorem.

3.2. PLATE RECEPTANCES

The radial deflection of a circular plate, which moves as a rigid body, is defined as
u,(r, 0, t); while the distributed force, which couples the plate to the shell, is defined as
E.(r, 0, t). In order to obtain the plate receptance

_ ur(as 05 t)

P11 = E@ 0.0 (28)

at the joint of the plate and the shell, where r = a, a tangential load
E(r, 0,t) = Fycos PO 5(r — a)e’®* (29)

is applied on the plate. But because the plate can be viewed as inelastic in its in-plane
motion (its lowest natural frequency due to elastic in-plane motion exceeds, for the typical
cases of interest, the transverse frequencies by far), it can be treated as having rigid-body
motion only. Therefore,

u,(a, 0,t) = Ugycos 0e’*™, (30)

and the equation of motion reduces to

a r2n
MU, = J f Fycos POcos 0ei*'5(r — a)rdrdo, (31)

0JO
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where M = na®ph, is the mass of the plate. Evaluating the equation results in

— anF,cos P0e’*'/(Mw?), P =1,
m@&ﬂ=% ’ Pl (32)

Dividing equation (32) by equation (29), equation (28) becomes

— (aph,w?), P =1,
= 33
ml{Q o (33)
To obtain the receptance
B.(a, 0, 1)
=77 34
b= A oy (34

where f,(a, 0, t) is the slope due to the moment loading, a line moment load is applied on the
circular plate at r = a

M, (r,0,t) = — My cos POS(r — a)e’®. (35)
The solution for the transverse deflection is of the form

& FpnUb(r, 0) e

u3(r, 0, [) = mgl W, (36)

where
Ugmn(ra 6) = [Jn(imnr) - (Jn()ana)/In(;“mna))ln()tmnr)]COS n(e - d))s (37)
W, = (V@) h E (38)

a> "N 121 —v)p’

— Mymtlp,a

Fx =
" PhN%,

[Jn +1 (imna) ( n( mnd /I ( mna) n+1 (imna)] (39)

are the mode shape equation, the natural frequency equation and the magnitude of the
coupling forcing function respectively. The plate modal mass is

Now =1 r (3 Comnl?) = 30 (Zomn@) L (G} /L (e @)} 1 (40)
0

The slope f5,(r, 0, t) is obtained by differentiation

ous(r, 0, t)

,0,1) ii%WMM%W
Gr B m=1

Br(h 05 t) = - wyznn — (,()2 5 (41)

where
3mn(r 0 lmn {(n//lmnr)Jn(imnr) - Jn+ 1 ()vmnr) - (Jn()vmna)/ln(;“mna))

(n/)“mn ) /Lmnr) In + l(imnr)] } cos n@ (42)
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Evaluating equation (41) at r = a, and dividing by equation (35), equation (34) becomes

ﬁ _ i 7-l:;“rznna [Jn +1 (imna) - Jn (}“mna)In +1 ()ana)/ln ()‘mna)] 2
2 threm(wrznn - a)Z) .

m=1

(43)

The cross receptances f§;, = f§,; become zero when these solutions are utilized, which is as
expected from the reciprocity theorem. Using the same approach in deriving the plate
receptances for the single plate-shell case, the plate receptances of a double—shell
combination can be systematized as:

(1) The receptance due to the radial displacement response of plate i (i =1, 2) to the
tangential loading F,;(i = 1, 2) is

5 — { — 1f(aphw?), P =1,

44
0, P#1, (44

where r = 1,3.
(2) The receptance due to the slope response of plate i (i = 1, 2) to the coupling line moment
loading M,;(i =1, 2) is

i niﬁma [Jn +1 ()“mna) - Jn (//Lmna)In +1 ()“mna)/In(/,{mna)] 2

P = PN (@ — )

(45)

m=1

where s = 2, 4.
The cross receptances f1, 21, B3> Paz>---»>Pax—1.21 are all zero from the reciprocity
theorem.

4. CURVATURE FACTORS

4.1. BARREL-SHAPED SHELL

If the curvature of a simply supported barrel-shaped shell is not too pronounced, as a rule
of thumb in engineering application, C,/L, < 1/20 (Figure 1), the transverse mode function
of the barrel shell can be approximated by that of the circular cylindrical shell. It satisfies the
boundary condition and is of the form

U3, (x, 0) = sin(mnx/Lg) cosn(0 — ¢). (46)
Also, the natural frequency of the barrel shell is given [30] as

> _ 5 n’[n*(a/R)’ + 2(a/R)(mna/L,)*1E
WBmn = Wimn + paz[(mﬂ:a/Ls)z +n2]2 >

(47)

where wg,, is the natural frequency of the barrel-shaped shell with a radius of curvature
R, and w;,, is the natural frequency of the transverse vibration mode of a simply
supported cylindrical shell with a radius a, which is given in Appendix A. Replacing the
natural frequencies of the cylindrical shell by those of the barrel-shaped shell, the shell
receptances formulated in section 3.1 for the cylindrical shell are all applicable to the barrel
shell.
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Figure 1. Section view of plate-shell combination consisting of a barrel-shaped shell with two spherically curved
plates.

4.2. SPHERICALLY CURVED PLATE

As discussed by Soedel [31], the circular plate with shallow spherical curvature (as a rule
of thumb, C;/2a < 1/20,i = 1, 2 (Figure 1)) has the same transverse mode function and the
same eigenvalues as those of the flat plate, as long as the boundary conditions are the same.
The natural frequency of the spherically curved plate is related to that of the flat plate in the
form

E
pR*’

2 _ 2
Dsmn = COpmn +

(48)

where R is the radius of curvature of the curved plate, ws,, is the natural frequency of the
spherically curved plate, and ,,, is the natural frequency of the flat plate, which is given in
equation (38). Similarly, replacing the natural frequencies of the flat plate by those of the
spherically curved plate, the plate receptances formulated in section 3.2 are all applicable to
the curved plate.

5. SOLUTION APPROACH

The Bessel functions (J,,1,) used in the formulation of receptances were calculated by
IMSL subroutines, so were the eigenvalues (4,,) of the circular plate. The 4-point Gauss
Legendre quadrature numerical integration scheme was implemented to calculate plate
modal mass NZ, in equation (40).

The solutions of the system frequency equation, equation (6), are the natural frequencies
of the plate-shell combination. The left-hand side of equation (6) becomes infinite (singular)
at each natural frequency of the plate and the shell, with the system frequencies being the
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n
pER —

Receptance determinant (1/N ) (x 107y

L I 1 1

0 0-375 0-750 1-130 1.500 1.800  2.250 2.630 3.000

Frequencies (rad /s) ( IOJ'}
Circumferential wave number n =0

Figure 2. Typical convergence of the left-hand side of equation (6) as a function of the number of terms in series
expressions: 10 terms, - —--— ; 30 terms ----- ;40 terms, ——.

zeros between the infinities. An iteration method (secant method) was selected to search for
these system frequencies. Figure 2 illustrates this since it shows the value of the left-hand
side of equation (6) as a function of frequency w. Zero values correspond to the system
natural frequencies. Since all receptances were expressed as series of plate or shell modes,
convergence of the solution, as a function of the terms used in the series expressions, was
studied. The dashed line in Figure 2 represents series consisting of 10 terms, the dotted line
is for 30 terms and the solid line is for 40 terms. In general, it was found that a satisfactory
convergence of solutions in the frequency range of interest was achieved using 40 terms.

The individual mode shapes were determined by substituting each system natural
frequency back into the displacement equations and calculating the displacement responses
due to force and moment loading at each point. The maximum amplitudes of the mode
shapes included in this section have been normalized to 15% of the length of the shell for
easy viewing. Therefore, they should not be viewed as realistic amplitudes, which would
typically not exceed the order of the shell thickness.

6. NUMERICAL RESULTS AND DISCUSSION

Using the receptance approach formulated above, numerical results are presented for
three configurations of a plates—shell structure. The shell and the plate are assumed to be
made of steel with the material properties: E =206 x 10* N/mm?, p = 7-85x10"°
Ns?/mm* and v = 0-3. The dimensions are L, =200 mm, a = 100 mm, h, = 2 mm and
hy = h, = 2 mm, unless stated otherwise.

6.1. CYLINDRICAL SHELL WITH SPHERICALLY CURVED END PLATES (CASE 1)

The natural frequencies and mode shapes of the combined structure (Figure 1), with
D, = Cy/aand D, = C,/a both equal to 0-1, are computed using the receptance method for
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the first four frequencies of each of the lowest six circumferential wave numbers, and shown
in Figure 3. Each mode shape is represented by an (M, n) designation, where n is the number
of circumferential waves (consider n = 0-5 here), and M is the frequency number in
ascending order for each n number (consider M = 1-4 only). In this case, since the

(LO)

|
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~— T

|
(12) |
|

/—\i/\

10463 11737 14156
| | |
2.0) I N I 2.2) |
| | |
— T Ny by
10464 11738 14177
| |
3.0) | G |
| |
-——\I/-‘
15054 20141 17722

;
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Figure 3. Natural frequencies (rad/s) and mode shapes of a cylindrical shell with spherically curved end plates,
Dy =D, =01 (Case 1). Mode (M, n) is for M = 1-4 and n = 0-5.
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Figure 3. Continued.

plate-shell joints are at the simply supported ends of the shell, the line moment is the only
interaction between the plate and the shell. The two subsystems are dynamically coupled to
each other only through slope changes. Rigid-body modes of the plate do not come into
play in this case, nor is the interaction between the plate and the shell due to a line force.
These mode shapes show the normal displacements (transverse deflections) of the spherical
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end plates and the radial displacements (transverse deflections) of the shell in cross-section
defined by 6 = 0 and 7.

For the purpose of verifying the results obtained by using the receptance method, the first
four natural frequencies and shapes of the n = 0 mode type were calculated by using a finite
element model [32] with the same geometric characteristics and boundary conditions, and
shown in Figure 4. As the analytical results are compared to the numerical results, it is seen
that there is, in general, good agreement. However, it is noticed that there are sizable
differences between the finite element results and the receptance results as far as the system
natural frequencies are concerned. Discrepancies are due to formulations used for the finite
element and assumptions made for the system receptances. The membrane effect of the shell
is considered to include the in-plane deformation in the formulation of the finite element.
However, for simplification, the analytical model does not employ full connection, it
assumes that the circular plate is inelastic in its plane and thus neglects possible influences of
small connection deflections in the tangential planes of the shell in order to reduce the
number of connections of each plate-shell joint. For lower frequencies and modes of the
system, the receptance solution based on the formulation of two connections is satisfactory.
However, for high frequencies and modes, full connection is necessary.

Figure 5 shows the variation of the natural frequencies with the circumferential wave
number (n = 0-7) for every lowest frequency in each n family (namely, all M =1
frequencies, from (1, 0), (1, 1), to (1, 7)), of three types of structure. The first is a simply

k. -

f,=13230rad/s f,= 13502 rad/s
Maode (1.0) Maode (2,0)

|‘-'_ X X

fy=1699%0rad/s fi=19170rad/s
Mode (3.0) Mode (4,0)

Figure 4. Natural frequencies and mode shapes of a cylindrical shell with spherically curved end plates,
D, = D, = 01 (Case 1), obtained by using the finite element program, ANSYS. They agree with those reported in
Figure 3.
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Figure 5. Natural frequencies for Case 1 with three plate configurations (D; = 0, 0-05 and 0-1; i = 1,2), plotted as
functions of the number of circumferential waves, n, for M = 1 (the first frequency for each n) and compared to the
natural frequencies of a simply supported plate (- ) with three configurations (D = 0, 0-05 and 0-1) and a simply
supported cylindrical shell (----). 0—0O, flat plate; A—a, cap plate A; 0—0O, cap plate B.

supported spherically curved plate (in dotted lines, with D =0, 0-05 and 0-1, where
D = C,/a or C,/a). The second is a simply supported cylindrical shell (in dashed line). The
third is a combination of a cylindrical shell and two spherically curved plates (in solid lines)
with three plate configuration, namely, both plates flat, both plates curved with
Dy = D, = 0:05, and both plates curved with D, = D, = 0-1. It is seen from Figure 5 that, at
lower circumferential wave numbers, the natural frequencies of the plate alone (dotted lines)
are lower than those of the shell alone (dashed line). Therefore, it is not unexpected that the
shell-plate joined structure has plate-controlled vibration characteristics at these numbers.
In other words, the plate is mainly responsible for the vibration activity. However, due to
the constraining effect of structural coupling with the shell, the natural frequencies of these
modes of a joined structure are higher than the natural frequencies of a simply supported
curved plate.

It is also seen that in Figure 5, around the area where the plate curves intersect the shell
curve, the combined structure happens to exhibit strong coupling between the plate and the
shell. It can be viewed as a frequency coincidence between the two uncoupled substructures.
As the circumferential wave number becomes larger, the natural frequencies of the shell
alone become lower than the natural frequencies of the plate. The natural frequencies of the
combined structure are therefore close to those of the shell alone, and the mode shapes of
the combined structure are expected to show shell-controlled characteristics with relatively
less plate activity.

It is noticed that, in Figure 5, the natural frequencies of the joined structure are raised for
modes with lower circumferential wave number as the curvatures of the plates are increased.
However, natural frequencies of modes with higher circumferential wave number stay the
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same. It explains that the joined structure, with its geometric configuration as described, has
plate-controlled vibration modes at lower circumferential wave number (n = 0-2).
Increasing curvature of the end plate will increase its stiffness, consequently, it will increase
the natural frequencies of those plate-controlled modes of the joined structure. However,
natural frequencies of the shell-controlled modes, which appear at higher n number
(n = 3-7), will not be affected by stiffening the end plates by curving them.

In Figure 6, it is seen that, at each of the lower circumferential wave numbers (n = 0, 1, 2),
the first two natural frequencies (M = 1, 2) of the joined structure consisting of a cylindrical
shell and two flat plates almost coincide. It is because the thickness and the configurations
of the two plates are identical, so the plates have almost the same natural frequencies for
these plate-controlled modes. If the curvature of one of the two end plates is increased, from
D =0to 01 (D = C,/a or C,/a), then the natural frequencies of the M = 2 modes will be
raised, as shown in Figure 7. The in-phase and the out-of-phase plate-controlled mode
pairs, such as modes (1, 0) and (2, 0), (1, 1) and (2, 1) shown in Figure 3, will become more
divided. If the curvatures of both end plates are increased to the same amount, the natural
frequencies of the lowest two plate-controlled modes of each circumferential wave number
(n = 0-2) will approach coincidence again, as shown in Figure 8. On reviewing Figures 6-8,
it is found that only by introducing asymmetry by increasing the thickness or curvature for
one of the two end plates will the natural frequencies of the mode pair appreciably drift
apart (mode splitting). The fundamental frequency of the joined structure will not be
increased, unless the thickness or curvatures of both the end plates are increased. This is an
important practical design concept, for example, in the hermetic compressor industry,
where curvatures are introduced to raise the lowest natural frequency of the system for noise
control purposes.

Nat. frequencies (rad/s) (><104)

0 1 2 3 4 ) 6 7
Number of circumferential waves n

Figure 6. Natural frequencies for Case 1 with two flat end plates (h; = h, = 2 mm and D, = D, = 0), plotted as
functions of the circumferential wave number n for M = 1 and 2, and compared to the M = 1 natural frequencies of
a simply supported flat (D = 0) circular plate (-~ ) and a simply supported cylindrical shell (----).0—0, M = 1;
A—A, M=2.
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Figure 7. Natural frequencies for Case 1 with two end plates at different curvatures (h; = h, =2 mm, D; =0,
D, = 0-1), plotted as functions of the circumferential wave number n for M = 1 and 2, and compared to the M = 1
natural frequencies of a simply supported curved plate with D =0, (-~ ), with D = 01, (— —), and a simply
supported cylindrical shell (----). 0—0O, M =1; A—a, M = 2.
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Figure 8. Natural frequencies for Case 1 with two curved end plates (h; = h, =2 mm, D, = D, = 0-1), plotted
as functions of the circumferential wave number n for M =1 and 2, and compared to the M =1 natural
frequencies of a simply supported curved (D = 0) plate (------ ) and a simply supported cylindrical shell (----).
OO, M=1,A—A, M=2.
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6.2. BARREL-SHAPED SHELL WITH FLAT END PLATES (CASE 2)

The natural frequencies and mode shapes of the flat plate-barrel shell combined
structure, with D3 = C,/a = 0-1 (see Figure 1), are computed using the receptance method
for the first four frequencies of each of the lowest six circumferential wave numbers
(n = 0-5), and shown in Figure 9. In order to verify the results obtained by using the
receptance method, the first four natural frequencies and shapes of the n = 0 mode type

)
T

2568 5911 9919

2569 5913 9920

11130 17415 24016

11133 17418 24377

Figure 9. Natural frequencies (rad/s) and mode shapes of a barrel-shaped shell (D3 = 0-1) with flat end plates
(hy = h, = 2 mm) (Case 2). Mode (M, n) is for M = 1-4 and n = 0-5.
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Figure 9. Continued.

were calculated by using a finite element model with the same geometric characteristics and
boundary conditions, and shown in Figure 10. Good agreement is found between the
analytical results and the numerical results. Therefore, the formulation of the system
frequency equation and the solution approach are verified to be correct. On comparison of
the corresponding modes of cases 1 and 2, it is found that some modes exhibit dissimilar
shapes, such as modes (3, 2), (1, 3), (2, 4) and (3, 5). This resulted from the changes in stiffness
of the substructures.
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Figure 10. Natural frequencies and mode shapes of a barrel-shaped shell (D5 = 0-1) with flat end plates (Case 2)
obtained by using the finite element program, ANSYS. They agree with those reported in Figure 9.

Figure 11 shows the variation of the natural frequencies with circumferential wave
number (n = 0-7) for the lowest frequency (M = 1) of three types of structure. The first is
a simply supported flat circular plate (dotted line). The second is a simply supported barrel
shell (dashed lines), with D3 = 0, 0-05 and 0-1. The third is a combination of a barrel shell
and two flat end plates (in solid lines) with three shell configurations, namely, Dy = 0, 0-05
and 0-1. It is noticed that, in Figure 11, the natural frequencies of the joined structure do not
change at the lower circumferential wave number (n = 0-2) as the curvature of the barrel
shell is increased. However, the natural frequencies of modes with higher circumferential
wave number (n = 3-7) do increase on increase of shell curvature. The explanation is that
increasing the shell curvature will increase the modal stiffness and hence increase the
natural frequencies of those shell-controlled modes of the joined structure. However,
natural frequencies of the plate-dominated modes, which dominate the system in the
lower-frequency range, will not be affected by stiffening the shell.

Figure 12 shows the variation of the first three natural frequencies (M = 1-3) for each
circumferential wave number (n = 0-7). It is seen that, at each of the lower circumferential
wave numbers (n = 0-3), the first two natural frequencies (M = 1, 2) of the joined structure
consisting of barrel shell and flat end plates coincide. Comparing Figure 12 with Figure 8, it
is seen that there are more plate-controlled modes in Figure 12. This can be verified by
reviewing the corresponding mode shapes. In Figure 3, modes (1,3) and (1,4) of the joined
structure, consisting of a cylindrical shell and spherically curved plates, show
shell-dominated behavior, while in Figure 9, modes (1,3) and (1,4) of a barrel shell-flat plate
joined structure exhibit stronger plate activity.
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Barrel shell ended by two flat circular plates
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Figure 11. Natural frequencies for Case 2 with three shell configurations (D3 = 0, 0-05 and 0-1), plotted as
functions of the circumferential wave number n for M = 1, and compared to the natural frequencies of a simply
supported flat plate (---- -~ ), and a simply supported cylindrical shell (- - —-) with three configurations (D3 = 0, 0-05
and 0-1). 0—0, Cylindrical shell; A—a, Barrel shell A; 0—o0, Barrel shell B.

Barrel shell (D = 10% radius) & flat end plates
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Figure 12. Natural frequencies of a barrel-shaped shell (D3 = 0-1) with two flat end plates (h; = h, = 2 mm),
plotted as functions of the circumferential wave number n for M = 1,2 and 3.0—0, M = 1; oA—A, M = 2; 0—0O,
M =3.
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6.3. BARREL-SHAPED SHELL WITH SPHERICALLY CURVED END PLATES (CASE 3)

The natural frequencies and modes of the barrel shell-curved plate combined structure,
with D; = D, = D3 = 0-1, are computed for the lowest four frequencies of each of the lowest
six circumferential wave numbers (n = 0-5), and shown in Figure 13. Reviewing mode
shapes in these three cases, it is noticed that modes in case 3 resemble those in case 2 more
than those in case 1.

Figure 14 shows the variation of the natural frequencies with circumferential wave
numbers (n = 0-7) for the first frequency (M = 1) of three types of structure. The first is

10463 11738 14180

10464 11739 14182

15054 20143 24391

15056 20145 263381

Figure 13. Natural frequencies (rad/s) and mode shapes of a barrel-shaped shell (D5 = 0-1) with spherically
curved end plates (D; = D, = 0-1) (Case 3). Mode (M, n) is for M = 1-4 and n = 0-5.
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Figure 13. Continued.

a simply supported spherically curved plate (dotted lines) with D = 0, 0-05 and 0-1. The
second is a simply supported barrel shell (dashed lines) with D3 = 0, 0-05 and 0-1. The third
one is a joined structure consisting of a barrel shell and two spherically curved end plates
(solid lines) with three configurations of plates and shell, namely, D; = D, = D3 = 0, 0-05,
and 0-1. It is shown in Figure 14 that the natural frequencies of the joined structure increase
on increasing the curvatures of the plates and the shell. It indicates that, by making the plate
increasingly spherically curved and the shell increasingly barrel-shaped, the modal stiffness
of each of the substructures can be increased, and consequently, the natural frequencies of
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Barrel shell ended by two spherical cap plates
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Figure 14. Natural frequencies for Case 3 with three different configurations of the plate and the shell
(Dy =D, =D;3 =0, 005 and 0-1), plotted as functions of the circumferential wave number n for M = 1, and
compared to the natural frequencies of a simply supported plate with three configurations (D = 0, 0-05 and 0-1),
(GRRREE ), and a simply supported cylindrical shell with three configurations (D3 = 0, 0-05 and 0-1), (----). 0—0O,
D =0%; A—a, D =5%;0—0,D =10%.

the joined structure will be increased, not only for the plate-controlled modes, but also for
the shell-controlled modes.

7. CONCLUSIONS

This paper is the first one to study the influences of small curvatures on free vibration of
a plate-shell combined structure, consisting of a circular barrel-like shell and two
spherically curved end plates, using the line receptance concepts and approximate
frequency equations of barrel-shaped shell and spherically curved plate. It illustrates in
detail the information about the natural frequencies and mode shapes of the combined
structure under different geometric configurations. In all cases, it is found that mode pairs
can be identified by involving the action of the two plates. Under symmetric conditions, the
plate motion will occur in-phase and out-of-phase. If symmetry is eliminated, the mode pair
will usually consist of one plate participating strongly in the system mode, with the other’s
motion suppressed, and vice versa. It is shown that, for plates of the same curvatures, the
plate with the minimum thickness will control the lowest system natural frequency. Only
when the plates become substantially thicker than the shell, will the shell control the lowest
system mode. For plates of the same thickness, it is shown that typically the plate with the
minimum curvature will control the lowest system natural frequency.

From the studies reported so far, it is understood that there are at least three ways to
detune mode pairs in a multiple plate—shell combined structure. The first way is to connect
the plates to the shell at symmetrical axial locations, but to keep the thickness of the plates
different. The second way is to keep the thickness of the plates the same, but connect the
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plates to the shell at unsymmetrical axial locations. The third one, which this study focuses
on, is to keep the thickness the same and the connecting locations symmetrical, but vary the
curvatures of the plates.

By either making the plates shallowly curved, or having the shell shallowly barrel-shaped,
or both, the corresponding substructures can be stiffened, and consequently, the natural
frequencies of the combined structure will be increased. The design rule is that increasing
curvature of the plate will increase system natural frequencies in the plate-controlled region,
while the system frequencies in the shell-dominated range will not be changed. Conversely,
increasing curvature of the shell will increase system frequencies in the shell-dominated
range and leave those in the plate-controlled region unchanged. If both the plate and the
shell are made to have curved surfaces, then the overall curvature effect will be
a superposition of each individual effect.

In order for equations (47) and (48) to be valid, the curvatures of the shell and the plate
should not be too pronounced. Very large curvatures, without reducing the base radius,
could actually decrease system frequencies since the shell becomes so much larger.
However, this study provides, from an analytical point of view, information about how
a plate-shell combined structure can be stiffened through introducing small curvatures to
each substructure, and the trends of the results agree with practical experiences. It should
also be kept in mind that in engineering applications, the curvature may be determined by
necessity and not be as restricted as it is in this paper.
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APPENDIX A: EQUATIONS OF NATURAL FREQUENCIES AND MODES
OF A SIMPLY SUPPORTED CYLINDRICAL SHELL [30]

The natural frequencies of the transverse mode are given as

Wl =— %\/MCOS(&B) —a/3.

The natural frequencies of the longitudinal mode are given as

o+ 2n a
O3 = — 3/0} — 3azCOS< 3 >—§1

The natural frequencies of the circumferential mode are given as

o+ 4n a
O3 = — 30} — 3a2008< 3 >—31
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where
o= C0571 <27a3 + 20? — 9a1a2>
2@ =3a® )’
1
a; = — E(kll + kys + k33),
1 2 2 2
a, = — W(kllkm + kaskaz + kyiksy — k33 — ki, — ki3),
1
az = — W(kuk%s + kaokis + kaskis + 2kyskaskys — kyikaskss),
where

mn 2 n 272
kyz;=D||— - .
The mode amplitude ratios (Aymu/Crmn) and (Biyn/Cimn), k = 1, 2, 3, are

k13(phwl%mn — kys) — kizkas
(phwlfmn — ky 1)(phwl%mn —ki,) — k%z’

k23(Phwl%mn —ky1) = ka1kq3
(phwlgmn — k4 1)(Ph031%mn —kys) — k%z.

+
(S

Akmn/Ckmn = -

Bkmn/ckmn = -
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